Problem 3.17

Solve Equation 3.69 for $\Psi(x)$. Note that $\langle x\rangle$ and $\langle p\rangle$ are constants (independent of x).

Solution

Equation 3.69 is the differential equation for the minimum-uncertainty wave packet.

$$
\begin{equation*}
\left(-i \hbar \frac{d}{d x}-\langle p\rangle\right) \Psi=i a(x-\langle x\rangle) \Psi \tag{3.69}
\end{equation*}
$$

Expand both sides.

$$
-i \hbar \frac{d \Psi}{d x}-\langle p\rangle \Psi=i a x \Psi-i a\langle x\rangle \Psi
$$

Bring all terms to the left side and factor Ψ.

$$
-i \hbar \frac{d \Psi}{d x}+(-i a x+i a\langle x\rangle-\langle p\rangle) \Psi=0
$$

Multiply both sides by i and divide both sides by \hbar.

$$
\begin{equation*}
\frac{d \Psi}{d x}+\left(\frac{a}{\hbar} x-\frac{a\langle x\rangle}{\hbar}-\frac{i\langle p\rangle}{\hbar}\right) \Psi=0 \tag{1}
\end{equation*}
$$

This is a first-order linear ODE for Ψ, so it can be solved with an integrating factor I.

$$
I=\exp \left[\int^{x}\left(\frac{a}{\hbar} r-\frac{a\langle x\rangle}{\hbar}-\frac{i\langle p\rangle}{\hbar}\right) d r\right]=\exp \left(\frac{a}{2 \hbar} x^{2}-\frac{a\langle x\rangle}{\hbar} x-\frac{i\langle p\rangle}{\hbar} x\right)
$$

Multiply both sides of equation (1) by I.

$$
\exp \left(\frac{a}{2 \hbar} x^{2}-\frac{a\langle x\rangle}{\hbar} x-\frac{i\langle p\rangle}{\hbar} x\right) \frac{d \Psi}{d x}+\left(\frac{a}{\hbar} x-\frac{a\langle x\rangle}{\hbar}-\frac{i\langle p\rangle}{\hbar}\right) \exp \left(\frac{a}{2 \hbar} x^{2}-\frac{a\langle x\rangle}{\hbar} x-\frac{i\langle p\rangle}{\hbar} x\right) \Psi=0
$$

The left side can be written as $d / d x(I \Psi)$ by the product rule.

$$
\frac{d}{d x}\left[\exp \left(\frac{a}{2 \hbar} x^{2}-\frac{a\langle x\rangle}{\hbar} x-\frac{i\langle p\rangle}{\hbar} x\right) \Psi\right]=0
$$

Integrate both sides with respect to x.

$$
\exp \left(\frac{a}{2 \hbar} x^{2}-\frac{a\langle x\rangle}{\hbar} x-\frac{i\langle p\rangle}{\hbar} x\right) \Psi=C
$$

Solve for $\Psi(x)$.

$$
\begin{aligned}
\Psi(x) & =C \exp \left(-\frac{a}{2 \hbar} x^{2}+\frac{a\langle x\rangle}{\hbar} x+\frac{i\langle p\rangle}{\hbar} x\right) \\
& =C \exp \left(-\frac{a}{2 \hbar} x^{2}+\frac{a\langle x\rangle}{\hbar} x\right) \exp \left(\frac{i\langle p\rangle}{\hbar} x\right)
\end{aligned}
$$

Complete the square in the exponent.

$$
\begin{aligned}
\Psi(x) & =C \exp \left[-\frac{a}{2 \hbar}\left(x^{2}-2\langle x\rangle x\right)\right] \exp \left(\frac{i\langle p\rangle}{\hbar} x\right) \\
& =C \exp \left(\frac{a}{2 \hbar}\langle x\rangle^{2}\right) \exp \left[-\frac{a}{2 \hbar}\left(x^{2}-2\langle x\rangle x+\langle x\rangle^{2}\right)\right] \exp \left(\frac{i\langle p\rangle}{\hbar} x\right)
\end{aligned}
$$

Therefore, letting A be the arbitrary constant,

$$
\Psi(x)=A \exp \left[-\frac{a}{2 \hbar}(x-\langle x\rangle)^{2}\right] \exp \left(\frac{i\langle p\rangle}{\hbar} x\right) ;
$$

the minimum-uncertainty wave packet is a gaussian function.

